Befaßte sich der Onkel mit einer bestimmten Idee, so mußte er unentwegt an sie denken und konnte nur von ihr sprechen. Er vergaß völlig, daß er sich an ein Kind wandte und entwickelte nicht selten vor mir die kompliziertesten Theorien. Und gerade das gefiel mir, und ich fühlte mich als Erwachsene behandelt, spannte alle meine Kräfte an, um ihn zu verstehen oder mir wenigstens doch den Anschein zu geben, als verstünde ich ihn.
Zwar hatte er Mathematik nicht studiert, war aber für diese Wissenschaft außerordentlich eingenommen. Er hatte aus verschiedenen Büchern einige mathematische Kenntnisse gesammelt und sprach gern darüber, wobei es ihm oft widerfuhr, daß er in meiner Gegenwart laut dachte So hörte ich von ihm etwas über die Quadratur des Kreises und von vielen ähnlichen Dingen, deren Sinn ich selbstverständlich nicht erfassen konnte, die aber auf meine Phantasie einwirkten und mir Begeisterung für die Mathematik einflößten. Ich sah in ihr eine höhere, geheimnisvolle Wissenschaft, die dem Kundigen eine neue, herrliche Welt eröffnet, zu welcher gewöhnliche Sterbliche jedoch keinen Zutritt erlangen können.
Da ich von diesen meinen ersten Begegnungen mit der Mathematik spreche, kann ich nicht umhin, eines höchst merkwürdigen Umstandes zu gedenken, der gleichfalls in mir das Interesse für diese Wissenschaft erweckte.
Als wir aufs Land zogen, mußte man das ganze Haus neu herrichten und alle Zimmer mit frischen Tapeten versehen. Wegen der großen Zahl der Räume reichten die Tapeten für das Kinderzimmer nicht mehr hin; es hätte zuviel Umstände gemacht, erst eine Tapete aus Petersburg zu beziehen, und das war bei der Bestellung für nur einen einzigen Raum wirklich nicht der Mühe wert. Man wartete daher eine günstige Gelegenheit ab, und so blieb dieses Zimmer jahrelang mit alten Schriften beklebt. Glücklicherweise hatte man zu diesem provisorischen Ankleben gerade die lithographierten Vorlesungen Ostrogradskis über Differential- und Integralrechnungen verwendet, die mein Vater in seiner Jugend gekauft hatte. Diese Bogen mit den bunten, unverständlichen Formeln nahmen bald meine Aufmerksamkeit in Anspruch. Ich stand, wie ich mich erinnere, als Kind stundenlang vor dieser geheimnisvollen Wand und bemühte mich, zum mindesten einzelne Sätze zu entziffern und die Ordnung herauszufinden, in der die Bogen aufeinander folgen mußten. Vom täglichen langen Beobachten prägte sich meinem Gedächtnis das äußere Bild vieler Formeln ein, selbst der Text hinterließ in meinem Gehirn eine tiefe Spur, obgleich ich ihn beim Lesen nicht verstand.
Als ich viele Jahre später, schon als fünfzehnjähriges Mädchen, bei dem bekannten Professor der Mathematik, Alexander Nikolaiwitsch Strannoljubski, in Petersburg die erste Lektion in den Differential-Rechnungen nahm, wunderte er sich, wie rasch ich begriff, was er über die Asymptote sagte »gerade als hätte ich im voraus alles über sie gewußt« — ganz so drückte er sich aus. In jenem Augenblicke, da er mir diese Begriffe erklärte, erinnerte ich mich tatsächlich in lebhafter Weise daran, daß all das auf jenem Bogen Ostrogradskis stand, und Begriffe wie »Grenzwert« und andere kamen mir wie längst bekannt vor.
Letzte Änderung: Mai 2014 Gabriele Dörflinger Kontakt
Zur Inhaltsübersicht Historia Mathematica Homo Heidelbergensis